Discontinuous Galerkin finite element method for shallow two-phase flows
نویسنده
چکیده
We present a discontinuous Galerkin finite element method for two depth-averaged two-phase flow models. One of these models contains nonconservative products for which we developed a discontinuous Galerkin finite element formulation in Rhebergen et al. (2008) J. Comput. Phys. 227, 1887-1922. The other model is a new depth-averaged two-phase flow model we introduce for shallow two-phase flows that does not contain nonconservative products. We will compare numerical results of both models and qualitatively validate the models against a laboratory experiment. Furthermore, because of spurious oscillations that may occur near discontinuities, a WENO slope limiter is applied in conjunction with a discontinuity detector to detect regions where spurious oscillations appear.
منابع مشابه
A Hybridized Crouziex-Raviart Nonconforming Finite Element and Discontinuous Galerkin Method for a Two-Phase Flow in the Porous Media
In this study, we present a numerical solution for the two-phase incompressible flow in the porous media under isothermal condition using a hybrid of the linear lower-order nonconforming finite element and the interior penalty discontinuous Galerkin (DG) method. This hybridization is developed for the first time in the two-phase modeling and considered as the main novelty of this research.The p...
متن کاملA stabilized finite element method using a discontinuous level set approach for solving two phase incompressible flows
A numerical method for the simulation of three-dimensional incompressible twophase flows is presented. The proposed algorithm combines an implicit pressure stabilized finite element method for the solution of incompressible two-phase flow problems with a level set method implemented with a quadrature-free Discontinuous Galerkin (DG) method [1]. The use of a fast contouring algorithm [2] permits...
متن کاملOn Discontinuous Galerkin Methods for Nonlinear Convection-diffusion Problems and Compressible Flow
The paper is concerned with the discontinuous Galerkin finite element method for the numerical solution of nonlinear conservation laws and nonlinear convection-diffusion problems with emphasis on applications to the simulation of compressible flows. We discuss two versions of this method: (a) Finite volume discontinuous Galerkin method, which is a generalization of the combined finite volume—fi...
متن کاملSpace-time Discontinuous Galerkin Method for Rotating Shallow Water Flows
In the present work, we analyze the rotating shallow water equations including bottom topography using a space-time discontinuous Galerkin finite element method. The method results in non-linear equations per element, which are solved locally by establishing the element communication with a numerical HLLC flux. To deal with spurious oscillations around discontinuities, we employ a stabilization...
متن کاملWell-balanced r-adaptive and moving mesh space-time discontinuous Galerkin method for the shallow water equations
In this article we introduce a well-balanced discontinuous Galerkin method for the shallow water equations on moving meshes. Particular emphasis will be given on r-adaptation in which mesh points of an initially uniform mesh move to concentrate in regions where interesting behaviour of the solution is observed. Obtaining well-balanced numerical schemes for the shallow water equations on fixed m...
متن کامل